
  1 

ASTR 288C – Lecture 8
Tuesday, 26 October 2009

Data Analysis III: Plotting

1) Interactive Data Language (IDL)

The “Interactive Data Language”, IDL, is a commercial software package that is
widely used in physics, astronomy, space sciences, solar physics, and medical
applications. IDL was created in the 1970s and has many things in common with
Fortran and C.

Pros:

• The data syntax is relatively simple and easy to understand.
• The “GNU Data Language”, GDL, a free, public-license software package

is available, which is an IDL clone. Most IDL programs will run with GNU.
• Access to many types of data: IDL is able to read most data formats,

including FITS, ASCII, FITS, JPEG, etc.
• IDL can be used interactively (on the screen) or to create very complex

routines and applications.
• IDL is probably the most powerful tool to analyze data. Routines are

readily available for most problems that you will encounter.
• IDL is particularly powerful in terms of visualization of data. It can handle

almost anything in 2D or 3D. IDL has a rich set of pre-built visualization
tools.

• You can develop procedures that can be added to the library. If you need
a procedure often, just call the procedure in your program (no need to type
the code in every single program).

• Very powerful and versatile.
• Many IDL libraries exist (for free), such as the IDL Astronomy Library.
• Hundreds of math and statistics routines are available.
• Cross-platform syntax: if you write IDL code, you can run it on a PC, Mac,

VMS, UNIX, SUN, etc. You can write a program and send it to colleagues,
regardless what computing platform they use.

• Code debugging capabilities: IDL not only tells you where it encountered
an error, it also gives hints what may be wrong.

• You can build “widgets” that allow you to interact with your data and
graphical visualization products.

• Existing Fortran or C code can be dynamically linked to IDL code, and
Fortran or C can call IDL routines.

• Operators and functions can work on an entire array.

 2 

Cons:
• Expensive! IDL is not free, although GDL is.
• Very powerful and versatile, which can make IDL a beast to handle with a

steep learning curve.
• IDL plots to the screen can look different from IDL plots to a file.
• Not optimized for producing plots in the formats that astronomy journals

want.

 There are many books about IDL that are written at all different levels from
beginner’s introductions to detailed technical manuals. There are also many good
tutorials, cookbooks, and guides available on the Web. One nice site is
http://www.astro.virginia.edu/class/oconnell/astr511/IDLexercises/, but it
is worthwhile googling to find Web sites that you find useful.

  3 

Examples:

IDL> a = 2
IDL> b = 5.0
IDL> c = a + b
IDL> help, a, b, c
A INT = 2
B FLOAT = 5.00000
C FLOAT = 7.00000

Note that “a” is an integer, but “b”, and subsequently “c” are a floating point,
keeping the variable with the highest precision. Variables do not need to be
declared.

The real power of IDL is revealed when using its array-oriented language:

For example, declare a variable called “array” as an integer matrix with two
dimensions of size 5 columns and 5 rows:

IDL> array = indgen (5, 5)
IDL> help, array.
ARRAY INT = Array[5, 5]
IDL> print, array
 0 1 2 3 4
 5 6 7 8 9
 10 11 12 13 14
 15 16 17 18 19
 20 21 22 23 24

In IDL, columns come first, in other words array[column,row]. Array indices start
at zero, so the array[1,3] is the value in the second row (1) and the fourth column
(3). Since IDL is an array-oriented language, any operation that is applied to an
array variable will automatically affect every element of the array without having
to utilize FOR loops. Example:

IDL> array = array * a
IDL> print, array
 0 2 4 6 8
 10 12 14 16 18
 20 22 24 26 28
 30 32 34 36 38
 40 42 44 46 48

 4 

You can “subscript” in IDL, access individual array elements

IDL> print, array [1,3]
 32

and perform operations on individual array elements:

IDL> test = array[1,3]*10
IDL> print, test
 320

Example of X-ray light curve data:

Date L_x L_x_err
[days] [cgs] [cgs]
8.7550 0.3296 0.13
11.465 0.4525 0.17
14.275 0.8877 0.23
16.785 1.2492 0.26
20.076 1.4000 0.26
25.280 1.5023 0.24
29.220 1.4210 0.22
33.681 1.4325 0.27
38.459 1.1971 0.24
43.128 1.1777 0.27
47.208 0.9340 0.20
51.530 0.7605 0.21
61.873 0.5783 0.18

  5 

Example of a program to plot a light curve:

; Give the program a name (anything after a semicolon “;” is a comment):

pro lightcurve

; Write output to a PostScript file:

file='lightcurve'
filename = file + '.ps'
set_plot, 'ps'
device, file=filename

; Read in data:

header = STRARR(2) ; array of strings
array = FLTARR(3,13) ; array of floating point numbers
OPENR, SN2008bo, 'lightcurve.dat', /GET_LUN
READF, SN2008bo, header, array
date = REFORM(array[0,*])
Lx = REFORM(array[1,*])
Lx_err = REFORM(array[2,*])

; Plot axis and data:

USERSYM, [0.8,-0.8,-0.8,0.8,0.8], [0.8,0.8,-0.8,-0.8,0.8], /FILL
PLOT, date, Lx, XRANGE=[0,70], YRANGE=[0.01,2.0], $
XTITLE='Date', $
YTITLE='Luminosity', CHARSIZE=1.5

; Close Postscript file:

device, /close
set_plot, 'x'

END

 6 

How to Run IDL:

There are two ways you can run IDL.

1) Command-line version: Just type in “idl” (without the double quotes) at
the unix command line prompt.

% idl
IDL Version 6.4.1, Mac OS X (darwin i386 m32). (c) 2007, ITT Visual
Information Solutions
Installation number: 1249-7.
Licensed for use by: NASA/GSFC

IDL>

Create/edit your IDL program with an ASCII editor (not a word processor such
as Word or Open Office) such a emacs, Xemacs, Textedit (Mac), Notepad
(Windows), vi, gedit, etc.
The program should be saved to a file with the filename extension *.pro.

  7 

Most editors will recognize that this is an IDL program and highlight the
syntax in different colors.

 8 

Next, you need to compile the program by typing “.run” (or “.r”), or “.compile”.
Note that there is a period (.) at the start of each command.

IDL> .r lightcurve.pro
% Compiled module: ERR_BAR.
% Compiled module: LIGHTCURVE.

The above example has compiled two modules successfully.

Now run the execute (or run) the program that is in the memory of your
computer (but not stored in a file):

IDL> lightcurve

If you don’t get errors, the program ran successfully. The example above has
created a plot and saved it into a file.

  9 

2) GUI Version: Type in “idlde”.
This will bring up a screen that shows the menu-driven GUI version of IDL.

 10 

IDL also has a “batch mode” that allows you to execute a series of IDL routines.
You can create an ASCII file with all IDL commands and simply run:

IDL> @batch

By doing so, each line in the batch file is read & executed before proceeding to
the next line.

The IDL Astronomy User’s Library:

The IDL Astronomy User’s Library contains ~500 routines that can be easily
implemented into your IDL code. It is a repository for astronomy-related IDL
programs that have been submitted by users. You can download the codes and
modify them to fit your needs. If you have an astronomy problem that needs IDL
coding, chances are that there is already a program that you can use or modify.

The IDL Astronomy User’s Library has programs in the areas of coordinate
conversion, date conversions, data base procedures, file and disk I/O, table I/O,
astrometry, FITS files I/O and manipulations, image manipulations, math &
statistics, plotting procedures, web sockets, and non-astronomy procedures.

You can download the IDL Astronomy User’s Library from the link below and add
it to your startup script (e.g., “.cshrc” if you are using a C-shell):

setenv IDL_ASTRO /usr/local/idlastronlib/data

Every time you want to call a program within that library, you type:

$IDL_ASTRO/<filename>

How do you get Help?

At the IDL prompt, type “?”. This will bring up he IDL help widget.

IDL> ?

Links and Useful Resources:

http://www.dfanning.com/ (Coyote’s Guide to IDL Programming)
http://www.ittvis.com/UserCommunity/UserForums.aspx (IDL Forum)
http://gnudatalanguage.sourceforge.net/ (GDL, a free IDL clone)
http://www.ittvis.com/ProductServices/IDL/ProductDocumentation.aspx
(IDL documentation)
http://idlastro.gsfc.nasa.gov/ (IDL Astronomy User’s Library)

  11 

2) PGPLOT Graphics Subroutine Library

One software package that is widely used for plotting data, particularly from
within software packages, is the PGPLOT Graphics Subroutine Library. PGPLOT
was created at CALTEC and is a device-independent graphics package to make
scientific graphs. The main purpose is to make publication quality plots with
minimum effort on the part of the user. It is device independent and the output
can be directed to any devices (files in many different formats, X windows,
printers, etc). It runs on Unix, Mac, and Windows.

PGPLOT itself is written in Fortran 77 and uses (supplied) C and C++ libraries to
run. PGPLOT can be called from within many programming environments (such
a Fortran, C, FTOOLS, PERL, PYTHON, etc), which makes it very versatile and
convenient to use. Below is an example of a plot produced by PGPLOT.

 
 
Links and Useful Resources:
http://www.astro.caltech.edu/~tjp/pgplot/ (PGPLOT main page)
http://www.astro.caltech.edu/~tjp/pgplot/contents.html (PGPLOT manual)

 12 

3) SM (née supermongo)
 

  SM is an interactive plotting program with a flexible command language. In 
many ways it is similar to IDL, but it is smaller and has fewer features. This makes it 
less useful than IDL, but far easier to learn and use. However, there is still a learning 
curve for SM. SM can be called interactively or directly from Fortan or C programs.  
SM is widely used in astronomy because it was written by astronomers and is 
designed so that the default plotting format is one that is acceptable to all of the 
major astronomy journals. It also has the ability to do basic data analysis such as 
fitting functions to data, performing statistical tests, and computing Fourier 
transforms. It is being overtaken by IDL as the primary plotting package used in 
astronomy, but is likely to remain in use for many more years. The Web page for SM 
is at http://www.astro.princeton.edu/~rhl/sm/. To run SM one usually types 
“sm” at a unix command line. Note that SM is not to be confused with another 
astronomical plotting package called “mongo”. 

  13 

Lab Work
  The purpose of today’s lab exercise is to learn to run IDL, to make simple 
changes to an IDL procedure, and to make a simple plot. 
 

1) Download the IDL procedure “lightcurve.pro” and the data file 
“lightcurve.dat” from the course Web site at 
http://lheawww.gsfc.nasa.gov/~sholland/astr288c/lectures/lecture8
/lightcurve.pro and 
http://lheawww.gsfc.nasa.gov/~sholland/astr288c/lectures/lecture8
/lightcurve.dat . 

2) Log into your account and start IDL. Use either the interactive or command‐
line version, whichever you prefer. 

3) Using IDL, read “lightcurve.pro” and execute the procedure “lightcurve”. The 
file “lightcurve.ps” will be created in the directory that you are running in. 
The “.ps” indicates that this is a PostScript file. You can view PostScript files 
with the unix command 
 
 gv lightcurve.ps & 

 
The plot that is produced by the original, unedited “lightcurve.pro” 
procedure should look like this. Note that it does not contain all of the data. 
 

 

 14 

 
4) Rename this plot so that it is not overwritten the next time you run IDL 

 
 mv –i lightcurve.ps whatever.ps

 
where “whatever.ps” can be whatever file name you wish. The name should 
end in “.ps” to indicate that this is a PostScript file. 

5) The default lightcurve procedure that you downloaded only plots the first 
five data points. You will need to edit “lightcurve.pro” (either using a text 
editor or using the interactive IDL environment, do not use a word processor) 
so that it plots all of the data and adjust the upper limits of the axes so that all 
of the data appears on the plot. 
 

a. Change the dimensions of the arrays that contain the data and the 
range of the for loop that draws the error bars so that they can handle 
all of the data. 

b. Increase the upper limits on the axes so all the data are visible. 
 

6) Add horizontal error bars for all of the data points. The first five already have 
horizontal error bars. The horizontal error bars represent the duration of 
each exposure. For example, the first exposure started at 8.62 days and 
ended at 8.89 days. Assume that each exposure is exactly one day long unless 
if other values are given in the IDL procedure. 

7) Adjust the position of the plot’s title (Swift/XRT) so that is in the upper right‐
hand corner of the plot. The title needs to be entirely inside the box. 

8) Print the new plot that is produced by IDL and hand it in as this week’s 
homework assignment. You may e‐mail it to Stephen.T.Holland@nasa.gov 
before the class on 2 Nov 2009 if you prefer.  

Data

Date L_x L_x_err
[days] [cgs] [cgs]
8.7550 0.3296 0.13
11.465 0.4525 0.17
14.275 0.8877 0.23
16.785 1.2492 0.26
20.076 1.4000 0.26
25.280 1.5023 0.24
29.220 1.4210 0.22
33.681 1.4325 0.27
38.459 1.1971 0.24
43.128 1.1777 0.27
47.208 0.9340 0.20
51.530 0.7605 0.21
61.873 0.5783 0.18

